Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy
نویسندگان
چکیده
Skeletal muscle mass is regulated by a balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB). In healthy humans, MPS is more sensitive (varying 4-5 times more than MPB) to changes in protein feeding and loading rendering it the primary locus determining gains in muscle mass. Performing resistance exercise (RE) followed by the consumption of protein results in an augmentation of MPS and, over time, can lead to muscle hypertrophy. The magnitude of the RE-induced increase in MPS is dictated by a variety of factors including: the dose of protein, source of protein, and possibly the distribution and timing of post-exercise protein ingestion. In addition, RE variables such as frequency of sessions, time under tension, volume, and training status play roles in regulating MPS. This review provides a brief overview of our current understanding of how RE and protein ingestion can influence gains in skeletal muscle mass in young, healthy individuals. It is the goal of this review to provide nutritional recommendations for optimal skeletal muscle adaptation. Specifically, we will focus on how the manipulation of protein intake during the recovery period following RE augments the adaptive response.
منابع مشابه
Skeletal Muscle Hypertrophy with Concurrent Exercise Training: Contrary Evidence for an Interference Effect.
Over the last 30+ years, it has become axiomatic that performing aerobic exercise within the same training program as resistance exercise (termed concurrent exercise training) interferes with the hypertrophic adaptations associated with resistance exercise training. However, a close examination of the literature reveals that the interference effect of concurrent exercise training on muscle grow...
متن کاملSimultaneous Effect of Resistance Training and Stem Cell Injection on Blood Glucose Levels, Insulin Resistance, Caspase 3 And 7 As Indicators of Skeletal Muscle Apoptosis in STZ-Induced Male Diabetic Rats
Background: The aim of the present study was to investigate the simultaneous effect of resistance training and stem cell injection on the levels of some indicators of skeletal muscle apoptosis in STZ-induced diabetic male rats. Methods: In this study, 30 rats were randomly divided into 5 groups. Rats in the diabetic group and the diabetic group + stem cell injection had a total of 17 sessions...
متن کاملHyperinsulinaemia, hyperaminoacidaemia and post-exercise muscle anabolism: the search for the optimal recovery drink.
Dietary supplements and other ergogenic aids are popular among athletes. Recent studies have shown that nutritional mixtures containing protein hydrolysates, added leucine, and high-glycaemic carbohydrates greatly augment insulin secretion compared with high-glycaemic carbohydrates only. When post-exercise hyperinsulinaemia is supported by hyperaminoacidaemia induced by protein hydrolysate and ...
متن کاملRole of resistance training with the approach of blood flow restriction in skeletal muscle cell growth
Background: The aim of this study was to investigate the response of ERK1/2 protein and muscular morphological adaptations to a period of resistance training with local blood flow restriction. Materials and methods: Twenty healthy male Wistar rats without clinically evident disease (5 weeks old, 120±7 g weight) were divided into four equal groups: control, control with limited blood flow...
متن کاملThe Effect of Resistance Training and Endothelial Stem Cell Injection on Skeletal Muscle Oxidant and Antioxidant Status in STZ-Induced Diabetic Male Rats
Background: Because insulin therapy cannot properly control the progression of diabetes and its complications, other alternative therapies may be desirable. The aim of this study was to investigate the effect of resistance training and endothelial stem cell injection on skeletal muscle oxidant and antioxidant status in STZ-induced diabetic male rats. Method: In this experimental study, 36 male...
متن کامل